JavaScript面象对象之继承

许多 OO 语言都支持两种继承方式:接口继承实现继承接口继承只继承方法签名,而实现继承则继承实际的方法。如前所述,由于在 ECMAScript函数没有签名,所以无法实现接口继承。ECMAScript 只支持实现继承,而且其实继承主要是依靠原型链来实现的。

原型链继承

ECMAScript 中描述了原型链的概念,并将原型链作为实现继承的主要方法。其基本思想是利用原型让一个引用类型继承另一个引用类型的属性和方法。简单回顾一下构造函数、原型和实例的关系:每个构造函数都有一个原型对象,原型对象都包含一个指向构造函数的指针,而实例都包含一个指向原型对象的内部指针。那么,假如我们让原型对象等于另一个类型的实例,结果会怎么样呢?显然,此时的原型对象将包含一个指向另一个原型的指针,相应地,另一个原型中也包含着一个指向另一个构造函数的指针。假如另一个原型又是另一个类型的实例,那么上述关系依然成立,如此层层递进,就构成了实例与原型的链条。这就是所谓原型链的基本概念。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
function SuperType(){
this.property = true;
}
SuperType.prototype.getSuperValue = function(){
return this.property;
};
function SubType(){
this.subproperty = false;
}
//继承了 SuperType
SubType.prototype = new SuperType();
SubType.prototype.getSubValue = function (){
return this.subproperty;
};
var instance = new SubType();
alert(instance.getSuperValue()); //true

问题
原型链虽然很强大,可以用它来实现继承,但它也存在一些问题。
问题一
其中,最主要的问题来自包含引用类型值的原型。包含引用类型值的原型属性会被所有实例共享;而这也正是为什么要在构造函数中,而不是在原型对象中定义属性的原因。在通过原型来实现继承时,原实际上会变成另一个类型的实例。

1
2
3
4
5
6
7
8
9
10
11
12
function SuperType(){
this.colors = ["red", "blue", "green"];
}
function SubType(){
}
//继承了 SuperType
SubType.prototype = new SuperType();
var instance1 = new SubType();
instance1.colors.push("black");
alert(instance1.colors); //"red,blue,green,black"
var instance2 = new SubType();
alert(instance2.colors); //"red,blue,green,black"

问题二
在创建子类型的实例时,不能向超类型的构造函数中传递参数。实际上,应该说是没有办法在不影响所有对象实例的情况下,给超类型的构造函数传递参数。

有鉴于此,再加上前面刚刚讨论过的由于原型中包含引用类型值所带来的问题,实践中很少会单独使用原型链。

借用构造函数模式

在解决原型中包含引用类型值所带来问题的过程中,开发人员开始使用一种叫做借用构造函数(constructor stealing)的技术(有时候也叫做伪造对象或经典继承)。这种技术的基本思想相当简单,即在子类型构造函数的内部调用超类型构造函数。函数只不过是在特定环境中执行代码的对象,因此通过使用 apply() 和 call() 方法也可以在(将来)新创建的对象上执行构造函数。

1
2
3
4
5
6
7
8
9
10
11
12
function SuperType(){
this.colors = ["red", "blue", "green"];
}
function SubType(){
// 继承了 SuperType
SuperType.call(this);
}
var instance1 = new SubType();
instance1.colors.push("black");
alert(instance1.colors); //"red,blue,green,black"
var instance2 = new SubType();
alert(instance2.colors); //"red,blue,green"

通过使用 call() 方法(或 apply() 方法也可以),我们实际上是在(未来将要)新创建的 SubType 实例的环境下调用了 SuperType 构造函数。这样一来,就会在新 SubType 对象上执行 SuperType() 函数中定义的所有对象初始化代码。结果,SubType 的每个实例就都会具有自己的 colors 属性的副本了。

传递参数
相对于原型链而言,借用构造函数有一个很大的优势,即可以在子类型构造函数中向超类型构造函数传递参数。

1
2
3
4
5
6
7
8
9
10
11
12
function SuperType(name){
this.name = name;
}
function SubType(){
//继承了 SuperType,同时还传递了参数
SuperType.call(this, "Nicholas");
//实例属性
this.age = 29;
}
var instance = new SubType();
alert(instance.name); //"Nicholas";
alert(instance.age); //29

以上代码中的 SuperType 只接受一个参数 name ,该参数会直接赋给一个属性。在 SubType 构造函数内部调用 SuperType 构造函数时,实际上是为 SubType 的实例设置了 name 属性。为了确保SuperType 构造函数不会重写子类型的属性,可以在调用超类型构造函数后,再添加应该在子类型中定义的属性。

问题
如果仅仅是借用构造函数,那么也将无法避免构造函数模式存在的问题——方法都在构造函数中定义,因此函数复用就无从谈起了。而且,在超类型的原型中定义的方法,对子类型而言也是不可见的,结果所有类型都只能使用构造函数模式。考虑到这些问题,借用构造函数的技术也是很少单独使用的。

组合继承

组合继承(combination inheritance),有时候也叫做伪经典继承,指的是将原型链和借用构造函数的技术组合到一块,从而发挥二者之长的一种继承模式。其背后的思路是使用原型链实现对原型属性和方法的继承,而通过借用构造函数来实现对实例属性的继承。这样,既通过在原型上定义方法实现了函数复用,又能够保证每个实例都有它自己的属性。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
function SuperType(name){
this.name = name;
this.colors = ["red", "blue", "green"];
}
SuperType.prototype.sayName = function(){
alert(this.name);
};
function SubType(name, age){
//继承属性
SuperType.call(this, name);
this.age = age;
}
//继承方法
SubType.prototype = new SuperType();
SubType.prototype.constructor = SubType;
SubType.prototype.sayAge = function(){
alert(this.age);
};
var instance1 = new SubType("Nicholas", 29);
instance1.colors.push("black");
alert(instance1.colors); //"red,blue,green,black"
instance1.sayName(); //"Nicholas";
instance1.sayAge(); //29
var instance2 = new SubType("Greg", 27);
alert(instance2.colors); //"red,blue,green"
instance2.sayName(); //"Greg";
instance2.sayAge(); //27

SuperType 构造函数定义了两个属性: name 和 colors 。 SuperType 的原型定义了一个方法 sayName() 。 SubType 构造函数在调用 SuperType 构造函数时传入了 name 参数,紧接着又定义了它自己的属性 age 。然后,将 SuperType 的实例赋值给 SubType 的原型,然后又在该新原型上定义了方法 sayAge() 。这样一来,就可以让两个不同的 SubType 实例既分别拥有自己属性——包括 colors 属性,又可以使用相同的方法了。

组合继承避免了原型链和借用构造函数的缺陷,融合了它们的优点,成为 JavaScript 中最常用的继承模式。而且, instanceof 和 isPrototypeOf() 也能够用于识别基于组合继承创建的对象。

原型式继承

道格拉斯·克罗克福德在 2006年写了一篇文章,题为 Prototypal Inheritance in JavaScript (JavaScript中的原型式继承)。在这篇文章中,他介绍了一种实现继承的方法,这种方法并没有使用严格意义上的构造函数。他的想法是借助原型可以基于已有的对象创建新对象,同时还不必因此创建自定义类型。为了达到这个目的,他给出了如下函数。

1
2
3
4
5
function object(o){
function F(){}
F.prototype = o;
return new F();
}

在 object() 函数内部,先创建了一个临时性的构造函数,然后将传入的对象作为这个构造函数的原型,最后返回了这个临时类型的一个新实例。从本质上讲, object() 对传入其中的对象执行了一次浅复制。

1
2
3
4
5
6
7
8
9
10
11
var person = {
name: "Nicholas",
friends: ["Shelby", "Court", "Van"]
};
var anotherPerson = object(person);
anotherPerson.name = "Greg";
anotherPerson.friends.push("Rob");
var yetAnotherPerson = object(person);
yetAnotherPerson.name = "Linda";
yetAnotherPerson.friends.push("Barbie");
alert(person.friends); //"Shelby,Court,Van,Rob,Barbie"

克罗克福德主张的这种原型式继承,要求你必须有一个对象可以作为另一个对象的基础。如果有这么一个对象的话,可以把它传递给 object() 函数,然后再根据具体需求对得到的对象加以修改即可。在这个例子中,可以作为另一个对象基础的是 person 对象,于是我们把它传入到 object() 函数中,然后该函数就会返回一个新对象。这个新对象将 person 作为原型,所以它的原型中就包含一个基本类型值属性和一个引用类型值属性。这意味着 person.friends 不仅属于 person 所有,而且也会被 anotherPerson以及 yetAnotherPerson 共享。实际上,这就相当于又创建了 person 对象的两个副本。

ECMAScript 5 通过新增 Object.create() 方法规范化了原型式继承。这个方法接收两个参数:一个用作新对象原型的对象和(可选的)一个为新对象定义额外属性的对象。在传入一个参数的情况下,Object.create() 与 object() 方法的行为相同。

1
2
3
4
5
6
7
8
9
10
11
var person = {
name: "Nicholas",
friends: ["Shelby", "Court", "Van"]
};
var anotherPerson = Object.create(person);
anotherPerson.name = "Greg";
anotherPerson.friends.push("Rob");
var yetAnotherPerson = Object.create(person);
yetAnotherPerson.name = "Linda";
yetAnotherPerson.friends.push("Barbie");
alert(person.friends); //"Shelby,Court,Van,Rob,Barbie"

寄生式继承

寄生式(parasitic)继承是与原型式继承紧密相关的一种思路,并且同样也是由克罗克福德推而广之的。寄生式继承的思路与寄生构造函数和工厂模式类似,即创建一个仅用于封装继承过程的函数,该函数在内部以某种方式来增强对象,最后再像真地是它做了所有工作一样返回对象。

1
2
3
4
5
6
7
function createAnother(original){
var clone = object(original); //通过调用函数创建一个新对象
clone.sayHi = function(){ //以某种方式来增强这个对象
alert("hi");
};
return clone; //返回这个对象
}

createAnother() 函数接收了一个参数,也就是将要作为新对象基础的对象。然后,把这个对象( original )传递给 object() 函数,将返回的结果赋值给 clone 。再为 clone 对象添加一个新方法 sayHi() ,最后返回 clone 对象。可以像下面这样来使用 createAnother() 函数:

1
2
3
4
5
6
var person = {
name: "Nicholas",
friends: ["Shelby", "Court", "Van"]
};
var anotherPerson = createAnother(person);
anotherPerson.sayHi(); //"hi"

person 返回了一个新对象—— anotherPerson 。新对象不仅具有 person的所有属性和方法,而且还有自己的 sayHi() 方法。

主要考虑对象而不是自定义类型和构造函数的情况下,寄生式继承也是一种有用的模式。继承模式时使用的 object() 函数不是必需的;任何能够返回新对象的函数都适用于此模式。

注意
使用寄生式继承来为对象添加函数,会由于不能做到函数复用而降低效率;这一点与构造函数模式类似。

寄生组合式继承

组合继承是 JavaScript 最常用的继承模式;不过,它也有自己的不足。组合继承最大的问题就是无论什么情况下,都会调用两次超类型构造函数:一次是在创建子类型原型的时候,另一次是在子类型构造函数内部。没错,子类型最终会包含超类型对象的全部实例属性,但我们不得不在调用子类型构造函数时重写这些属性。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
function SuperType(name){
this.name = name;
this.colors = ["red", "blue", "green"];
}
SuperType.prototype.sayName = function(){
alert(this.name);
};
function SubType(name, age){
SuperType.call(this, name); // 第二次调用 SuperType()
this.age = age;
}
SubType.prototype = new SuperType(); // 第一次调用 SuperType()
SubType.prototype.constructor = SubType;
SubType.prototype.sayAge = function(){
alert(this.age);
};

在第一次调用 SuperType 构造函数时,SubType.prototype 会得到两个属性: name 和 colors ;它们都是 SuperType 的实例属性,只不过现在位于 SubType 的原型中。当调用 SubType 构造函数时,又会调用一次 SuperType 构造函数,这一次又在新对象上创建了实例属性 name 和 colors 。于是,这两个属性就屏蔽了原型中的两个同名属性。

总结

JavaScript 主要通过原型链实现继承。原型链的构建是通过将一个类型的实例赋值给另一个构造函数的原型实现的。这样,子类型就能够访问超类型的所有属性和方法,这一点与基于类的继承很相似。原型链的问题是对象实例共享所有继承的属性和方法,因此不适宜单独使用。解决这个问题的技术是借用构造函数,即在子类型构造函数的内部调用超类型构造函数。这样就可以做到每个实例都具有自己的属性,同时还能保证只使用构造函数模式来定义类型。使用最多的继承模式是组合继承,这种模式使用原型链继承共享的属性和方法,而通过借用构造函数继承实例属性。
此外,还存在下列可供选择的继承模式。

  • 原型式继承,可以在不必预先定义构造函数的情况下实现继承,其本质是执行对给定对象的浅复制。而复制得到的副本还可以得到进一步改造。
  • 寄生式继承,与原型式继承非常相似,也是基于某个对象或某些信息创建一个对象,然后增强对象,最后返回对象。为了解决组合继承模式由于多次调用超类型构造函数而导致的低效率问题,可以将这个模式与组合继承一起使用。
  • 寄生组合式继承,集寄生式继承和组合继承的优点与一身,是实现基于类型继承的最有效方式。